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SUMMARY

In this paper, a general optimal formulation for the dynamic Smagorinsky subgrid-scale (SGS) stress
model is reported. The Smagorinsky constitutive relation has been revisited from the perspective of
functional variation and optimization. The local error density of the dynamic Smagorinsky SGS model
has been minimized directly to determine the model coe�cient CS. A su�cient and necessary condi-
tion for optimizing the SGS model is obtained and an orthogonal condition (OC), which governs the
instantaneous spatial distribution of the optimal dynamic model coe�cient, is formulated. The OC is a
useful general optimization condition, which uni�es several classical dynamic SGS modelling formula-
tions reported in the literature. In addition, the OC also results in a new dynamic model in the form
of a Picard’s integral equation. The approximation tensorial space for the projected Leonard stress is
identi�ed and the physical meaning for several basic grid and test-grid level tensors is systematically
discussed. Numerical simulations of turbulent Couette �ow are used to validate the new model formula-
tion as represented by the Picard’s integral equation for Reynolds numbers ranging from 1500 to 7050
(based on one half of the velocity di�erence of the two plates and the channel height). The relative
magnitudes of the Smagorinsky constitutive parameters have been investigated, including the model
coe�cient, SGS viscosity and �ltered strain rate tensor. In general, this paper focuses on investigation
of fundamental mathematical and physical properties of the popular Smagorinsky constitutive relation
and its related dynamic modelling optimization procedure. Copyright ? 2005 John Wiley & Sons Ltd.
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1. INTRODUCTION

Interest in the application of large eddy simulation (LES) to turbulent �ows has been renewed
in the past decade. One signi�cant improvement was the development of so-called dynamic
models. In the context of Smagorinsky-type subgrid-scale (SGS) models, the assumption of
a SGS viscosity is adopted to relate the SGS stress to the �ltered strain rate tensor. The
dynamic Smagorinsky model (SM) of Germano et al. [1] is based on an innovation which
uses a second test-grid �lter to dynamically extract modelling information from the resolved
scales of motion to determine the model coe�cient CS. Traditionally, CS is regarded in the
most general case as a function of time and space. However, the system of equations to
be used for calculating it is overdetermined and does not admit a unique solution. Practical
implementation of such dynamic SMs has instead relied on the use of the theory of optimiza-
tion to determine the ‘best’ instantaneous spatial distribution for CS.
Using the least squares method, Lilly [2] proposed a modi�ed optimal formulation for the

dynamic model (DM) of Germano et al. [1]. The constitutive relation (Smagorinsky) for
the DM is based on the Boussinesq assumption, which admits a linear relation between the
resolved strain rate tensor and the SGS stress to be modelled. Recently, the optimal DM for-
mulation obtained by Lilly has been extended from a linear to a dynamic nonlinear quadratic
form by Wang and Bergstrom [3, 4] following the stress modelling approach via explicit
tensorial polynomial expansion introduced by Lumley [5], Pope [6], and Lund and Novikov
[7]. Previous optimal LES modelling approaches also include the so-called ideal LES formula-
tions proposed by Langford and Moser [8] and Zandonade et al. [9], which aim to reproduce
all single-time, multipoint statistics accurately and minimize the error of large-scale dynamics
via stochastic approximations. The dynamic localization Smagorinsky SGS stress model of
Ghosal et al. [10] was based on minimizing a residual functional, which is an integral of the
norm of the residual tensor of the Germano identity over the entire domain. They obtained a
Fredholm integral equation of the second kind (FIE2), which determines the optimal spatial
distribution of the model coe�cient and avoids the mathematical inconsistency encountered
in the conventional DM of Germano et al. [1] and Lilly [2]. By introducing the SGS ki-
netic energy transport equation (k-equation) and using a similar variational method, Ghosal
et al. [10] reformulated their integral equation and developed a new dynamic localization
model. The latter reformulated model prohibits instability due to the occasional excessive
backscatter of the SGS energy and is weakly realizable with k¿0. Making use of the obser-
vation that CS is a fairly slowly varying function of time, Piomelli and Liu [11] proposed an
approximate extrapolation scheme to localize the dynamic SM. Although their approximate
method is not rigorously compatible with variational theory, it has the bene�t of avoiding the
large cost in CPU time required for solving the FIE2, and has been successfully tested using
a rotating channel �ow. Menon et al. [12], Kim and Menon [13], and Pallares and Davidson
[14] tested a di�erent k-equation dynamic localization model, which is based on the similarity
behaviour observed in the experiment of Liu et al. [15] and the least squares method of opti-
mization adopted by Lilly [2]. Carati et al. [16] developed a dynamic localization stochastic
model by introducing an eddy force term into the SGS model to account for the backscatter of
SGS kinetic energy. Similar to the approach of Ghosal et al. [10], Carati et al. [16] achieved
the goal of optimization by minimizing a globally integrated residual. A common feature of
the global optimization technique is that it minimizes the residual integrated over the general
domain (usually an integral-type functional), which does not necessarily ensure that the local
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residual is minimal. One of the objectives of this paper is to minimize the local residual
directly, avoiding such a global integration and yet maintaining mathematical consistency.
Notwithstanding the alternative approaches discussed above [3, 4, 12–14, 16], the dynamic

Smagorinsky-type models remain the most popular in LES, and this paper focuses on explor-
ing the properties of this type of models in terms of the constitutive relation and the opti-
mization technique used for the dynamic modelling procedure. Before introducing the new
approach of optimization, it is necessary to review the previous contributions of Germano
et al. [1], Lilly [2], and Ghosal et al. [10]. In LES, the �ow variables are decomposed into
a resolved large-scale component (denoted by an overbar) and a SGS component using a
�ltering technique, i.e.

��(x)=
∫ ∞

−∞
�(y)G(x; y) dy (1)

where G(x; y) represents the convolution kernel associated with a characteristic �lter size ��.
By applying the �ltering process to the momentum equation for incompressible �ow, the SGS
stress tensor of the grid level appears as

�ij= uiuj − �ui �uj (2)

which then needs to be modelled to represent the e�ect of the SGS motions on the resolved
�eld.

1.1. Conventional dynamic Smagorinsky SGS model [1; 2]

The conventional Smagorinsky-type dynamic SGS model introduced by Germano et al. [1]
and modi�ed by Lilly [2] was a breakthrough and has been widely used for LES. In their
model, the constitutive relation between the grid level SGS stress and the resolved strain rate
tensor can be expressed as

�∗
ij= �ij − �ij

3
�kk =−2CS ��2| �S| �Sij (3)

The asterisk is used to indicate the trace-free form of a tensor and �ij is the Kronecker delta.
The resolved strain rate tensor has the form of �Sij= 1

2( �ui;j+ �uj;i) and its magnitude is evaluated
by | �S|=(2 �Sij �Sij)1=2. The test-grid level SGS stress tensor is de�ned as

Tij= ũiuj − �̃ui �̃uj (4)

where the tilde represents the test-grid �ltering process based on a characteristic �lter size

of �̃�. Similar to the approach for �∗
ij, the constitutive relation between T ∗

ij and �̃Sij can be
modelled as

T ∗
ij =Tij − �ij

3
Tkk =−2CS �̃�2| �̃S| �̃Sij (5)

The two SGS stresses, i.e. �ij and Tij, are related by the Germano identity [1], de�ned as

Lij=Tij − �̃ij (6)
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where Lij is the resolved Leonard-type stress: Lij= �̃ui �uj − �̃ui �̃uj. Substituting Equations
(3) and (5) into the trace-free form of Equation (6), the following equation is obtained:

L∗
ij =−�ijCS + ]�ijCS (7)

where

�ij =2 �̃�2| �̃S| �̃Sij (8)

�ij =2 ��2| �S| �Sij (9)

At any speci�c spatial position, Equation (7) represents �ve independent instantaneous equa-
tions for the single unknown, CS. Therefore, Equation (7) is an overdetermined system, and
consequently a unique solution for CS is not available and a residual exists between the right-
and left-hand sides of Equation (7). However, an optimal value for CS can be obtained by
minimizing the local error density function, which, at each time step, is a function of space
de�ned by

Q=EijEij (10)

where Eij is the local error tensor, based on the residual of Equation (7), i.e.

Eij=L∗
ij + �ijCS − ]�ijCS (11)

From the theory of approximation [17], we know that the above optimization approach seeks
the projection of L∗

ij in the speci�ed approximation tensor space of the model, M
orig
L (which

will be discussed later in Section 3). The projection then represents the ‘best substitute’ for
L∗

ij , i.e.

L∗
ij ≈L

proj∗
ij =−�ijCℵ

S + ]�ijCℵ
S (12)

where the superscript ℵ represents the optimal result. From the above concepts and Equa-
tion (11), the local error tensor takes the following form:

Eij=L∗
ij − L

proj∗
ij (13)

The di�culty in minimizing Q comes from the �ltered term in Equation (11), i.e. ]�ijCS. Ger-
mano et al. [1] and Lilly [2] both used an assumption of incomplete spatial invariance (ISI),
which assumes CS to be spatially invariant so that it can be extracted from this �ltering opera-
tion; whereas, CS is assumed to be spatially variant in the other parts of the model. Therefore,
a mathematical inconsistency emerges, i.e. the treatment of CS in the second and third terms on
the right-hand side of Equation (11) is di�erent. Nevertheless, with this assumption, Equation
(11) can be simpli�ed to

Eij=L∗
ij +MijCS (14)

where

Mij= �ij − �̃ij (15)
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The physical meaning of �ij, �ij, Mij and L
proj∗
ij will be proposed in Section 2. Minimizing Q

using the least squares method and noting that the trace of Lij vanishes, then yields the
conventional DM formula �rst derived by Lilly [2]

Cℵ
S (x)=−MijLij

MijMij
(16)

It has been observed that the above popular DM formulation can lead to an unrealistic
SGS dissipation e�ect if the model coe�cient is restricted to be positive; on the other hand, a
potential numerical instability arises due to excessive backscatter of the SGS turbulent kinetic
energy (TKE) if the model coe�cient is allowed to be negative [11, 18]. Furthermore, the
model is not bounded and admits a possible singularity when the denominator of the for-
mulation (MijMij) becomes very small [18, 19]. Finally, this model is based on the classical
Boussinesq assumption which requires the principal axes of the negative SGS stress tensor to
be aligned with those of the resolved strain rate tensor, and thus leads to an inadequate ten-
sorial geometrical representation of the SGS stress [3, 20]. To prevent the potential numerical
insatiability, plane averaging technique is often applied to the modelling formula (16) when
2-D homogeneity exists [1, 11, 18, 21, 22]. The drawbacks of the Smagorinsky-type models
addressed above are related to the overly simpli�ed linear Boussinesq constitutive relation.
Recent dynamic nonlinear modelling approaches [3, 4, 7, 23–25] have demonstrated some sig-
ni�cant improvement related to these issues.
Also, it should be indicated that the above optimization procedure to obtain Equation (16)

is based on the minimal residual of the Germano identity, which was the �rst and is still the
most popular criterion in the dynamic SGS modelling procedure. However, it is not the only
choice. Other criteria involving di�erent types of identities include: the kinetic energy identity
originally introduced by Cabot and utilized by Ghosal et al. [10], a new identity involving
an explicit �lter and its inverse by Kuerten et al. [26], the generalized Germano identity by
Sagaut [19], and the vector identity by Morinishi and Vasilyev [27]. The Germano identity
began to attract scrutiny right after the classical papers of Germano et al. [1] and Lilly [2]
were published. Some relevant research papers include Ronchi et al. [28], Meneveau and
Katz [29], Kuerten et al. [26], and Brun and Friedrich [30]. Using Taylor series expansions,
Brun and Friedrich [30] extensively studied the grid level SGS stress tensor �ij, test-grid level
SGS stress tensor Tij and Germano identity. The errors involved in the SGS stress terms
were speci�ed in their study and the corresponding corrections to the stress terms have been
quanti�ed.

1.2. Global functional optimization approach [10]

On observing the mathematical inconsistency in the conventional DM mentioned above,
Ghosal et al. [10] minimized a global error functional using the functional variational method
without adopting the a priori assumption of ISI to handle ]�ijCS. The global error functional
adopted in their approach is de�ned as

F(CS)=
∫ ∞

−∞
Q dx=

∫ ∞

−∞
EijEij dx (17)
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To �nd the ‘best’ spatial distribution of CS, such that the global error functional F is minimal,
the variation of F must vanish, i.e.

�F(CS; �CS)=2
∫ ∞

−∞
Eij[�ij�CS − ]�ij�CS]dx=0 (18)

which then results in the following integral equation:

�ij(x)Eij(x)− �ij(x)
∫ ∞

−∞
Eij(y)G(y;x) dy=0 (19)

This equation can be further rewritten in the form of a FIE2 with a non-singular kernel
if �ij(x)�ij(x) �=0. In the approach of Ghosal et al. [10], a global integration in Equation
(17) is necessary to extract the function �CS from the �ltering term ]�ij�CS, so that Equation
(19) can be obtained using the functional variational theory. However, as will be shown in
Section 2, we have found that the local error density function Q can be minimized directly
by introducing the Dirac delta function without adopting such an additional global integration.
Numerical results for turbulent Couette �ow based on the new approach will be presented in
Section 4. The major conclusion of the paper will be summarized in Section 5.

2. A SUFFICIENT AND NECESSARY CONDITION FOR LOCAL OPTIMIZATION
OF THE DYNAMIC SMAGORINSKY MODEL

Although some approximate local optimization methods are available, e.g. the conventional
DM [2] based on the assumption of ISI and the integral-type localization model obtained by
minimizing the integral of Q over the entire domain [10], a consistent mathematical method for
minimizing Q directly is not yet available in the literature. The philosophical idea for �nding
such a direct consistent local optimization approach is borrowed from solid mechanics, which
utilizes the Dirac delta function �D(x; y) as an important tool to treat local e�ects (e.g. the
local concentrated non-continuous forces and moments), so that they can be generally included
in the continuous di�erential or integral governing equations and be treated in the same way
as other globally continuous e�ects or forces.
In order to �nd the extremum value of Q directly using the functional variational method

following the above idea, it is necessary to rede�ne the quantities Eij and Q. We use the
symbols Eij and Q to indicate their modi�ed de�nitions, respectively. The modi�ed de�nition
for the local error tensor, which is analogous to Equation (11), takes the following form:

Eij(x;x0)=L∗
ij (x0) + �ij(x0)CS(x;x0)−

∫ ∞

−∞
�ij(y)CS(y;x0)G(x0; y) dy (20)

where CS(x;x0) and Eij(x;x0) represent, respectively, the model coe�cient function and local
error tensor function of x for a speci�c location x0. The variable x runs over the entire
computational domain (�) and these two 3-D spatial functions are speci�c for the given
location x0 ∈�. The local error density retains a similar form to Equation (10), however, it
becomes a functional of CS(x;x0), using the following �xed point mapping:

Q(CS(x0;x0))=Eij(x;x0)Eij(x;x0)|x= x0 (21)
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which varies only with the coe�cient function CS(x;x0) at a given location x0. The varia-
tional problem then can be de�ned as follows: at the location x0 ∈�, �nd an optimal function
Cℵ
S (x;x0)∈� such that Q(Cℵ

S (x0;x0)) is minimal. Here, C
ℵ
S (x0;x0) is the localization (opti-

mal) model coe�cient and � represents the function space for CS(x;x0). All Cℵ
S (x;x0) for

di�erent locations generate a set of optimal coe�cient functions, i.e.

{Cℵ
S }= {Cℵ

S (x;x0) |Q(Cℵ
S (x0;x0))6Q(CS(x0;x0)); ∀CS(x;x0)∈�; ∀x0 ∈�} (22)

and all Cℵ
S (x0;x0); ∀x0 ∈�, generate a set of optimal model coe�cients, which taken together

represent a 3-D optimal distribution of CS, i.e.

{Cℵ0
S }= {Cℵ

S (x0;x0) |Q(Cℵ
S (x0;x0))6Q(CS(x0;x0)); ∀CS(x;x0)∈�; ∀x0 ∈�} (23)

which retains a function mapping (surjective) from the spatial domain � to the image
set {Cℵ0

S }. Thus, unlike the traditional approach of searching for one optimal function CS(x)
for the entire domain at each time step, the new approach will look for the optimal function
set and the set of optimal model coe�cients, i.e. {Cℵ

S } and {Cℵ0
S }, respectively. These two

sets are uncountable in the continuous case, while having at least N 3 independent elements in
the discrete case, where N 3 represents the total number of discrete nodes. Although conceptu-
ally more abstract than the traditional approach, this new mathematical approach of regarding
the model coe�cient CS does not change its role in determining the SGS stress de�ned by
Equation (3) within the classical framework of the Smagorinsky constitutive relation, and as
will be shown later, it is actually more �exible in terms of mathematics. Furthermore, some
general formulations and useful physical concepts can be derived using this new approach.
With the rede�ned mathematical expressions for Eij(x;x0), Q(CS(x0;x0)), {Cℵ

S }, and {Cℵ0
S },

we can begin the regular procedure of optimization for the variational problem de�ned pre-
viously. Let the �rst order variation of Q vanish, i.e.

�Q=2Eij�Eij=0 (24)

∀x0 ∈�. Considering Equations (20) and (21), the above equation becomes

Eij(x0;x0)
[
�ij(x0)�CS(x0;x0)−

∫ ∞

−∞
�ij(y)�CS(y;x0)G(x0; y) dy

]
=0 (25)

The Dirac delta function �D(x; y) has the property: �(x)=
∫ ∞

−∞ �(y)�D(x; y) dy, such that
Equation (25) can be expressed as∫ ∞

−∞
Eij(x0;x0)[�ij(y)�D(x0; y)− �ij(y)G(x0; y)]�CS(y;x0) dy=0 (26)

∀ �CS(y;x0)∈�. Therefore, the following relation must hold:

Eij(x0;x0)[�ij(y)�D(x0; y)− �ij(y)G(x0; y)]=0 (27)

∀x0 ∈�, or more brie�y

EijM ′
ij=0 (28)
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where Eij=Eij(x0;x0), and

M ′
ij=M ′

ij(y;x0)= �ij(y)�D(x0; y)− �ij(y)G(x0; y) (29)

Because of the Dirac delta function contained in its �rst term, M ′
ij is a generalized tensorial

function [31] of y at a given location x0. In view of the convolution contained in Eij (see
Equation (20)), Equation (28) is actually an integral equation with respect to CS(x;x0).
Equation (28) also indicates an elegant orthogonal condition (OC) between the local residual
stress (or error stress tensor) Eij and the tensor M ′

ij at any given location x0. So far, the
OC has been proven to be a necessary condition for making the functional Q minimal and
as such represents a Distribution Equation for the local optimal model Coe�cient (DEC) for
the dynamic Smagorinsky SGS stress model. In e�ect, this OC is also a su�cient condition
for minimizing Q, and the proof of su�ciency will be addressed at the end of this section.
The following is an attempt to provide an interpretation of the previously discussed ten-

sors M ′
ij and L

proj∗
ij , and also tensors �ij and �ij which are frequently encountered in the

literature. In order to understand the physical meaning of these tensors, we need to revisit
some basic concepts given in Section 1.1. From the constitutive relation given by Equa-
tion (3), we understand that at each time step, �ij acts as the ‘base stress tensor function’
(explicit function of space) for the grid level SGS stress �∗

ij, which is then obtained by
weighting �ij with (−CS). Similarly, �ij can be interpreted as the ‘base stress tensor func-
tion’ for the test-grid level SGS stress T ∗

ij at each time step. Both �ij and �ij are related to
the �ltered stain rate tensor �Sij. Extensive discussions on �Sij-related tensorial integrity bases,
invariants and the tensorial spaces for the Reynolds stress and SGS stress, can be found in
References [3–7, 23, 24, 32–34]. Recall that the Leonard stress term L∗

ij in the Germano iden-
tity (Equation (6)) is approximated by Equation (12) using the SGS models given by Equa-
tions (3) and (5). Equation (12) indicates that L∗

ij is approximated using �ij and �ij by a linear
weighting operation involving Cℵ

S (x;x0). From the de�nition of M ′
ij, the following interesting

constructive relation between L
proj∗
ij and M ′

ij can be readily obtained:

L
proj∗
ij (x0)=−

∫ ∞

−∞
Cℵ
S (y;x0)M

′
ij(y;x0) dy (30)

∀x0 ∈�. From the point of view of approximation theory, the variational problem de�ned pre-
viously can be equivalently expressed as follows: at a given location x0, �nd Cℵ

S (x;x0)∈�
for the projection of L∗

ij (x0) in the speci�ed approximation stress tensor space Mo, i.e.

L
proj∗
ij (x0)∈Mo, such that the ‘error’, Eij(x0;x0), is orthogonal to Mo (see Equation (28)).

Here, Mo is a local approximation tensor space for the Leonard stress at x0, constructed by

Mo =Mo(x0)

=
{
L
appr∗
ij (x0)

∣∣∣∣Lappr∗
ij (x0)=−

∫ ∞

−∞
CS(y;x0)M ′

ij(y;x0) dy; ∀CS(y;x0)∈�; y∈�
}
(31)

Obviously, Lappr∗
ij (x0), the element of the local approximation tensor space for the Leonard

stress, is a functional of CS(y;x0) at the location x0 ∈�, and the space Mo is speci�c for x0.
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The above variational problem requires that Eij(x0;x0) be orthogonal to any element in Mo,
which can be validated in a straightforward manner using Equations (28) and (31):

Eij(x0;x0)L
appr∗
ij (x0)=−

∫ ∞

−∞
CS(y;x0)Eij(x0;x0)M ′

ij(y;x0) dy≡ 0 (32)

∀Lappr∗
ij (x0)∈Mo.

Equation (31) shows a linear constructive relation between L
appr∗
ij (x0) and M ′

ij, weighted by

CS(y;x0) dy in a 3-D continuous case. Considering the di�erence in units between L
appr∗
ij (x0)

and M ′
ij, M

′
ij can thus be understood as the ‘intensity tensor function’ of the local elementary

approximation Leonard stress Lappr∗
ij (x0). Equation (31) also profoundly demonstrates how in

a dynamic SM approach, the local elementary approximation Leonard stress Lappr∗
ij (x0) is con-

structed through the local test-grid level SGS stress and the global grid level SGS stress. Since
�ij(x0)=

∫ ∞
−∞ �ij(y)�D(x0; y) dy, the �rst term of M ′

ij, i.e. �ij(y)�D(x0; y) in Equation (29), re-
�ects the contribution of the local test-grid level stress (indicated by �ij) to the local value of
L
appr∗
ij (x0) because of the sharp localization e�ect of the Dirac Delta function at x0. Similarly,

the second term, �ij(y)G(x0; y), re�ects the contribution of the grid level stress (indicated by
�ij) at all locations to the local value of L

appr∗
ij (x0) using the �lter kernel function G(x0; y)

as a weight at x0.
Since the reversed procedure from Equation (27) to Equation (24) also strictly holds, the OC

(Equation (28)) is equivalent to the variational condition (Equation (24)). In mathematics [35],
the variational condition (Equation (24)) is regarded as a necessary condition for the functional
minimization. However, since Q=EijEij is a second order functional of CS(x;x0) and is non-
negative, the value of Q can only be minimal for the optimal local coe�cient function. Details
of the proof of su�ciency are given in Appendix A. Thus, the variational condition (Equation
(24)) and the OC (Equation (28)) are not only necessary but also su�cient for minimizing
the local error functional Q. This is the principal conclusion of this research work, which can
be brie�y summarized by the following proposition:

Proposition
For the dynamic Smagorinsky SGS stress model, the local error density functional Q at a
given location x0, is minimum, if and only if EijM ′

ij=0.

3. PRELIMINARY THEORETICAL APPLICATIONS OF THE OC

In this and the following sections, some preliminary theoretical and numerical applications of
the above-obtained su�cient and necessary condition (the OC) for optimizing the dynamic
SM will be presented, respectively. The applications and examples to be presented in these
two sections serve the purpose of demonstrating how to utilize the OC to derive some useful
practical results. However, it should be indicated that these applications and examples are
not intended to be a complete demonstration of the properties of the OC and its potential
applications; a full theoretical and numerical exploration of the topic is beyond the scope of
this paper.
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In the remainder of this section, we present three theoretical derivatives of the OC, i.e.:
using the OC to derive the conventional dynamic SGS stress modelling formula of Lilly [2],
the dynamic model of Ghosal et al. [10] in the form of a FIE2, and a new dynamic optimal
SGS model in the form of a Picard’s integral equation (PIE).
Integrating both sides of the OC in terms of y over the entire domain, results in

Eij(x0;x0)[�ij(x0)− �̃ij(x0)]=0 (33)

∀x0 ∈�. Applying the de�nition of Mij given in Equation (15), the above relation
simpli�es to

EijMij=0 (34)

which is the integral form of the orthogonal condition (IOC) at any given location x0.
Mij is another frequently encountered tensor in the literature, which in view of the previous
discussion, can be explained in general terms as the di�erence between the test-grid level SGS
base stress and the �ltered grid level SGS base stress, i.e. �ij − �̃ij. Although an additional
integration has been performed in obtaining Equation (33) from the OC, the result still retains
some implications of the original variational problem, which now requires the local error
tensor Eij to be orthogonal to Mij at a given location x0. An elegant linear constructive
relation between M ′

ij and Mij can be obtained from Equation (29) as follows

Mij(x0)=
∫ ∞

−∞
M ′

ij dy (35)

at a given location x0. The application of the above equation will be demonstrated in Sec-
tion 3.1.
Substituting Eij as de�ned in Equation (20) into the IOC, we obtain

L∗
ij (x0)Mij(x0) + �ij(x0)Mij(x0)CS(x0;x0)− Mij(x0)

∫ ∞

−∞
�ij(y)CS(y;x0)G(x0; y) dy=0 (36)

which is an integral equation that governs the optimal function Cℵ
S (x;x0) at any given location

x0. However, this is not a regular integral equation in that Cℵ
S (x;x0) can in principle be

di�erent at every x0, which means that the integral equation needs to be solved at all N 3

discrete nodes for the independent optimal functions. In general, this would be costly and is
of little practical interest. Fortunately, some useful special solutions of Equation (36) under
speci�c restrictions have been found, e.g. the DM of Lilly [2], the FIE2 of Ghosal et al. [10]
and a new modelling formula in the form of a PIE to be derived in the remainder of this
section.

3.1. Restriction to constant distribution of Cℵ
S (x;x0)

If Cℵ
S (x;x0)≡Cℵ

S (x0;x0), i.e. C
ℵ
S (x;x0) has a 3-D spatially constant distribution with respect

to x at each x0, {Cℵ
S } then becomes a set consisting of independent constant functions. Thus

Equation (36) becomes

[L∗
ij (x0) +Mij(x0)Cℵ

S (x0;x0)]Mij(x0)=0 (37)
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which then results in

Cℵ
S (x0;x0)=−Mij(x0)Lij(x0)

Mij(x0)Mij(x0)
(38)

∀x0 ∈�. Clearly, the above result obtained using the revised approach is the same as the
conventional DM formulation of Lilly [2], i.e. Equation (16), except for the conceptual di�er-
ence that here we are looking for an optimal coe�cient set {Cℵ0

S } instead of the conventional
single optimal coe�cient function Cℵ

S (x). However, this conceptual di�erence does not result
in any di�erence between Equation (16) and Equation (38) in calculating the value of the
local DM coe�cient in any numerical tests. The constant functions are independent (and can
be di�erent) at each di�erent x0, such that {Cℵ0

S } can still yield a non-constant optimal distri-
bution of the model coe�cient over the entire 3-D domain. As such, it has been demonstrated
that the conventional assumption of ISI is not the only way to obtain Lilly’s result. From
the above approach, we now understand that Lilly’s result can be generalized as a special
solution of the IOC. The restriction condition of the new approach based on the set {Cℵ0

S }
is weaker than the conventional [1, 2] assumption of ISI, and thus provides a method for
obtaining Lilly’s result in a mathematically consistent way. This is due to the fact that in
comparison with the conventional approach [1, 2] for a single optimal function Cℵ

S (x), the
new approach has the advantage of allowing the freedom to choose an independent optimal
function at each position to compose {Cℵ0

S }.
An alternative consistent approach to obtain Lilly’s formulation can start from the con-

struction equation for L
proj∗
ij , i.e. Equation (30). Under the restriction condition considered,

i.e. Cℵ
S (x;x0)≡Cℵ

S (x0;x0), C
ℵ
S (x;x0) is independent of x at a given location x0. Therefore,

using Equation (35), Equation (30) becomes

L
proj∗
ij (x0)=−Cℵ

S (x0;x0)Mij(x0) (39)

which has a speci�c meaning in physics, i.e. under the restriction condition of Cℵ
S (x;x0)≡Cℵ

S

(x0;x0), the projected Leonard stress L
proj∗
ij (x0) can be generated from the tensor Mij(x0) using

the coe�cient −Cℵ
S (x0;x0) as a weight. From the theory of approximation, an orthogonal

relation must exist between Eij and L
proj∗
ij (x0), i.e. EijL

proj∗
ij (x0)=0 or

−[L∗
ij (x0)− L

proj∗
ij (x0)]Cℵ

S (x0;x0)Mij(x0)=0 (40)

The above equation yields two solutions, i.e. a trivial solution of Cℵ
S (x0;x0)≡ 0, and an

orthogonal relation of [L∗
ij (x0)−L

proj∗
ij (x0)]Mij(x0)=0 which upon substituting Equation (39)

results in Equations (37) and (38), the revised conventional dynamic SGS model of Lilly [2]
proposed previously. Therefore, besides the general interpretation given at the beginning of
Section 3, Mij(x0) can be further identi�ed from Equation (39) as the ‘base stress tensor’
for the local elementary approximation Leonard stress L

appr∗
ij (x0) in the speci�c case of the

revised conventional dynamic SGS modelling approach (Equation (38)) considered. Thus,
under the restriction of Cℵ

S (x;x0)≡Cℵ
S (x0;x0), the revised conventional dynamic approach

of Lilly [2] seeks Cℵ
S (x0;x0) to generate L

proj∗
ij (x0) in the local approximation tensor space
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constructed by

Mrev
L =Mrev

L (x0)

= {Lappr∗
ij (x0)|Lappr∗

ij (x0)=−CS(x0;x0)Mij(x0); ∀CS(x0;x0)∈R} (41)

where R is the set of real numbers. Clearly, Mrev
L ⊆ Mo at x0. Again, it should be noted

that the above interpretation of Lilly’s approximation tensor space for the Leonard stress
is mathematically consistent because Equation (39) is obtained from Equation (30) without
resorting to the assumption of ISI. However, if we use the original assumption [1, 2] of ISI
and begin from Equation (14), we can obtain the original approximation tensor function space
of Lilly [2] for the Leonard stress, following a similar analysis, i.e.

M
orig
L = {Lappr∗

ij (x)|Lappr∗
ij (x)=−CS(x)Mij(x); ∀CS(x)∈C(�); x∈�} (42)

where C(�) represents the set of continuous functions over the domain �. It is easy to
show that in this speci�c case of Lilly’s original approach [2], the orthogonal relation is
Eij(x)Mij(x)=0, and similarly, Mij(x) serves as the ‘base stress tensor function’ for L

appr∗
ij (x)

weighted by −CS(x). Thus far, the construction of the elementary approximation Leonard
stress has been interpreted for both the original [2] and current revised dynamic SGS stress
modelling formula, and the application of Equation (35) for relating Mij and M ′

ij has also
been demonstrated.

3.2. Restriction to identical distribution of Cℵ
S (x;x0)

3.2.1. A new Picard’s integral equation. If Cℵ
S (x;x0) has the same 3-D spatial distribution

for each x0, the elements of the set {Cℵ
S } become identical, i.e. Cℵ

S (x;xa)≡Cℵ
S (x;xb); ∀x∈�

and xa �=xb. This simpli�es the problem to the traditional approach of searching for a single
optimal coe�cient function Cℵ

S (x) over the entire domain, instead of a special optimal function
Cℵ
S (x;x0) for each x0. This is a desirable feature and Equation (36) becomes a regular integral
equation, which is a Fredholm integral equation of the third kind (FIE3) or PIE [36], i.e.

L∗
ij (x)Mij(x) + �ij(x)Mij(x)CS(x)− Mij(x)

∫ ∞

−∞
�ij(y)CS(y)G(x; y) dy=0 (43)

where the replacement of x0 by x is valid, since the equation holds ∀x0 ∈�. In the case of
�ij(x)Mij(x) �=0, this FIE3 or the PIE can be further rearranged into a new FIE2:

f(x)=CS(x) +
∫ ∞

−∞
 (x; y)CS(y) dy (44)

where

f(x)=−L∗
ij (x)Mij(x)

�ij(x)Mij(x)
(45)
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Figure 1. Direct theoretical applications of the OC.

and the non-symmetric kernel is

 (x; y)=−Mij(x)�ij(y)
�ij(x)Mij(x)

G(x; y) (46)

3.2.2. Fredholm integral equation of the second kind of Ghosal et al. [10]. The above inte-
gral equations, i.e. Equations (43) and (44) were obtained using the IOC, which is di�erent
than the FIE2 obtained by Ghosal et al. [10]. The fact that the result of Ghosal et al. [10]
is also a special solution of the OC under the condition of the identical distribution solution
of Cℵ

S (x;x0) can be demonstrated as follows. We have observed that the formulation of the
OC is not symmetric in terms of x0 and y. Under the restriction of identical distribution of
Cℵ
S (x;x0), Eij(x0;x0) can then be reduced to Eij(x0) and the OC becomes integrable in terms
of x0, and we obtain∫ ∞

−∞
Eij(x0)�ij(y)�D(x0; y) dx0 −

∫ ∞

−∞
Eij(x0)�ij(y)G(x0; y) dx0 = 0 (47)

which can be further rearranged into Equation (19), the result of Ghosal et al. [10] as discussed
in the previous section. Considering the de�nition of Eij, i.e. Equation (11), we observe that
Equation (19) has one extra integral operation compared with the proposed Equations (43)
and (44). Thus, the new PIE proposed in Section 3.2, would be less costly in computation
than the conventional FIE2 of Ghosal et al. [10]. The above demonstration of the theoretical
derivatives of the OC is brie�y summarized in Figure 1.

4. PRELIMINARY NUMERICAL APPLICATIONS OF THE OC

In the previous theoretical application of the OC, we obtained three theoretical derivatives, i.e.
the DM of Lilly [2], the FIE2 proposed by Ghosal et al. [10], and the new DM in the form
of a PIE. As indicated earlier, the theoretical potential and applications of the OC are not
limited to these three special derivatives. The FIE2 was originally obtained by minimizing a
globally integrated residual functional [10]. In spite of its important theoretical value, the FIE2
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has only been applied to several cases [10, 16, 37] in the past 10 years due to its complex
convolution structure and costly numerical algorithm to solve the integral system. The DM on
the other hand, has been relatively widely tested since its invention in 1991 [1, 2, 11, 18, 22],
however, it has been con�rmed that a plane averaging is often necessary to maintain numerical
stability for simulations based on the DM for �ows such as pressure- and shear-driven channel
�ows. Since numerical tests of the conventional DM and FIE2 are not the purpose of this
research, we will focus on the numerical validation of the PIE in this study (although the DM
of Lilly [2] is used for comparison). It should be noted that the main purpose for presenting
the formulation of the PIE in the previous section and its related numerical results in this
section, is to demonstrate one possible theoretical and practical application of the OC, the
major conclusion of this research. Therefore, in the general structure of this study, theoretical
and numerical analyses performed in Sections 3 and 4 are auxiliary to the elucidation of the
OC presented previously in Section 2.
The numerical tests were performed using turbulent Couette �ow with a physical domain

of L1×L2×L3 = 8�h× 2h× 4�h, where h is the half-channel height, set to be 10mm. Turbu-
lent Couette �ow is a canonical test problem for wall-bounded anisotropic turbulence, which
has been studied both experimentally [38–43] and numerically [13, 43–49]. The transitional
Reynolds number (lowest Reynolds number for which turbulence can be sustained) for Cou-
ette �ow is ReT ≈ 600 according to Leutheusser and Chu [39], while ReT ≈ 720 (or Re�T ≈ 26)
according to other studies [42–45]. The two Reynolds numbers mentioned above are de�ned
as Re=Uh(2h)=� and Re�= u�h=�. Here, Uh is one half of the velocity di�erence between
the two plates, u� is the friction velocity de�ned as u�=(�w=�)1=2, and �w represents the wall
shear stress. The critical Reynolds number for fully developed turbulent Couette �ow [43] is
ReF ≈ 1000 or Re�F ≈ 35. It should be noted that although pressure-driven Poiseuille channel
�ow has exactly the same physical geometry as shear-driven Couette channel �ow, its transi-
tional Reynolds number for turbulence to be sustained and critical Reynolds number for fully
developed turbulence are much higher. For pressure-driven channel �ows, Patel and Head
[50] found the transitional Reynolds number at which a log law with universal constants can
be observed is about Re�T ≈ 104; while according to Eckelmann [51], Kim et al. [52], and
Jim	enez and Moin [53], the critical Reynolds number for fully developed �ow is Re�F ≈ 142.
Thus, both the transitional and critical Reynolds numbers in pressure-driven channel �ow are
about four times larger than those for shear-driven Couette �ow (104=26≈ 142=35≈ 4).
The fractional step method [54] and second order Adams–Bashforth scheme have been used

to discretize the Navier–Stokes equation. A collocated grid system is used in the simulation,
and a momentum interpolation scheme for the face �ux is adopted to achieve numerical
stability for a collocated grid arrangement [55]. Periodic boundary conditions are applied in
the streamwise (x1) and spanwise (x3) directions, while the no-slip boundary condition is
applied in the wall-normal direction (x2). Statistics for the time averaged quantities are based
on 5000 time steps. In the simulations being reported, the Reynolds number ranges from 1500
to 7050 (from 2:1ReT to 9:8ReT). For the purpose of comparison, analysis will be focused on
the �ow patterns for Re=2600, 4762 and 7050, for which data have been documented in the
literature. To resolve the turbulence �eld for Re=2600, Bech et al. [43] used 256×70×256
nodes (non-uniform in the wall-normal direction) in DNS for a �eld domain of 10�h×2h×4�h,
while Kim and Menon [13] used 48×48×32 nodes (non-uniform in the wall-normal direction)
in LES for a �eld domain of 4�h × 2h × 2�h. In this study, a coarse uniform grid system
of 663 control volumes in total was used for all Reynolds numbers. In addition, for the case
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of Re=2600, two other uniform grid systems, i.e. 343 and 483 were also used to examine
the grid e�ect in the simulation.

4.1. Solver for the PIE

In the following context, an e�cient implicit solver will be introduced, which makes use
of the discrete Gaussian �lter and is speci�c to turbulence with 2-D homogeneity such as
pressure-driven Poiseuille channel �ow, shear-driven Couette channel �ow, �ow passing over
a �at plate, etc. Sagaut and Grohens [56] reported a useful second order accurate discrete
Gaussian �lter for LES, i.e.

�̃(I; J; K)=
1
3

1∑
q=−1

aq[�(I + q; J; K) + �(I; J + q; K) + �(I; J; K + q)] (48)

where a−1 = a1 = 1
24	

2 and a0 = 1
12 (12 − 	2). Here, 	= �̃�= �� represents the ratio of the cut-

o� �lter sizes of the test-grid level and the grid level �lters in a dynamic SGS modelling
approach. An advantage of choosing the speci�c value 	=2 is that the discrete Gaussian
�lters of the second and fourth orders introduced by Sagaut and Grohens [56] share the same
formulation. By substituting the above equation into Equation (43) and averaging the result
in the homogeneous plane, the following discrete system can be obtained:

{
〈�mnMmn〉p − a0

3
〈Mmn�mn〉p − 1

3

1∑
q=−1

aq
[〈Mmn�I+q; J;K

mn 〉p + 〈Mmn�I; J;K+q
mn 〉p

]}
CJ
S

−a−1
3

〈Mmn�I; J−1; K
mn 〉pCJ−1

S − a1
3

〈Mmn�I; J+1; K
mn 〉pCJ+1

S + 〈MmnL
∗
mn〉p=0 (49)

where 〈·〉p=
∫ ∫

dx1 dx3 represents the planar integral operation, and CJ
S is the model coe�-

cient for the J th homogeneous plane. The above equation is a 1-D tri-diagonal banded linear
system for CJ

S , i.e.

1∑
q=−1

AJ
qC

J+q
S + SJ =0 (50)

which can be readily solved using the conventional tri-diagonal matrix algorithm (TDMA).
Here, AJ

q and SJ represent the coe�cients and source term contained in Equation (49). The
boundary condition is set as CS =0 at the wall. From a physical point of view, CS in�uences
the magnitude of the SGS viscosity which is de�ned as

�sgs =CS ��2| �S| (51)

Therefore, this boundary condition is compatible with the notion that the SGS stresses vanish
at the wall due to the no-slip boundary condition. Since the computational cost of the TDMA
is trivial, the above-proposed implicit solver is expected to give both high e�ciency and
accuracy without any signi�cant additional increase in computational cost. As indicated by
Carati et al. [16], the relative computational cost for di�erent DMs is di�cult to quantify
in a precise manner due to its dependence on the computer con�guration and details of the
code. Nevertheless, we compared the relative computational cost among the proposed PIE, the
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Table I. Absolute and relative computational cost (Re=2600).

Grid 663 483 343

Cost T=TS (s) Ratio T=TS (s) Ratio T=TS (s) Ratio

PIE 43.1 1.04 16.0 1.03 4.4 1.02
DM 41.5 1 15.6 1 4.3 1
SM 22.5 0.54 8.7 0.56 2.7 0.63

standard DM of Lilly [2] and the conventional constant-parameter SM [57]. The comparative
study was performed with the same code structure, and the same initial velocity and pressure
�elds. The cost was measured using the averaged computer time for each time step (T=TS)
relative to that of the DM. An ALC PC (Pentium IV-2.66GHz) was used for evaluating the
relative cost. Table I indicates that the T=TS for the SM is only about 54–63% that of the
standard DM, while the proposed PIE generally costs only 2–4% more in terms of T=TS
than the standard DM, indicating that the additional cost is negligible. In fact, according to
our previous research [37], for turbulence with 2-D homogeneous dimensions, even Ghosal’s
FIE2 can also be solved very e�ciently (with an additional cost of about 5% compared to the
DM) by applying a similar discretization methodology. It should be noted that although the
proposed implicit solver for the PIE and that for the FIE2 [37] have an advantage of being
highly e�cient, it sacri�ces the property that the coe�cient should be local not only in the
wall-normal direction but also in the homogeneous plane. As we know, both the PIE and FIE2
hold locally at any physical location. Therefore, the computational cost for direct solution of
these integral systems for a �ow �eld with complex geometries or without 2-D homogeneity
is expected to be much higher. General e�ective numerical algorithms for locally solving the
integral equations of both the PIE and FIE2 [10] need to be pursued in future studies.

4.2. Basic �ow features and discussion

In this subsection, the features of turbulent Couette �ow predicted by the LES using the pro-
posed PIE will be presented. Figure 2 shows the dimensionless velocity pro�les obtained for
the three Reynolds numbers of 2600, 4762 and 7050. Although the di�erences in the velocity
pro�les for the Reynolds number of Re=2600 are very small, the LES result is closer to the
DNS result of Bech et al. [43] than the experimental data of Aydin and Leutheusser [40]. As
expected, the velocity pro�le at Re=7050 has a narrower wall region than those at Re=4762
and Re=2600. The simulation data of Figure 2 are replotted in Figure 3 using wall coordi-
nates. The prediction for the near-wall velocity pro�le generally agrees with the experimental
results of Robertson and Johnson [38], Bech et al. [43], Aydin and Leutheusser [41], as well
as the classical two layer wall law [58] given by

u+=x+2 (x+265)

u+=2:5 ln(x+2 ) + 5:5 (x+2 ¿30)
(52)

where u+ = 〈 �u1〉=u� and x+2 = x2u�=�, and 〈·〉 represents the plane and time averaging operation.
Figures 4(a)–(c) illustrate the wall-normal distributions of the three resolved turbulence

intensity components for three di�erent Reynolds numbers, respectively. In Figures 4(a)–(c),
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Figure 2. Mean dimensionless velocity pro�le (663 nodes).

Figure 3. Mean velocity pro�le in wall coordinates (663 nodes).

the residual velocity component is de�ned as �u′′
i = �ui − 〈 �ui〉. As shown in the �gures, the

peak value for 〈 �u′′2
1 〉1=2=u� appears at x+2 =13 for Re=2600, x+2 =15 for Re=4762 and

x+2 =16 for Re=7050. These agree approximately with the locations x+2 =12 for Re=2600
reported by Bech et al. [43], x+2 =11 ∼ 16 for Re=2600 and 4762 reported by Aydin and
Leutheusser [41], and x+2 ≈ 16 for Re=7050 reported by Robertson and Johnson [38]. Figure 4
also indicates that the magnitudes of the peak values of the spanwise and wall-normal compo-
nents of the turbulence intensities predicted using the PIE are somewhat lower than the DNS
results (Re=2600) of Bech et al. [43], while the streamwise component is slightly higher
than those of the DNS and experimental results. Such a feature that the predicted streamwise
turbulence intensity is slightly higher than those predicted by the DNS and measured in ex-
perimental studies is characteristic to a coarse grid LES computation, and is consistent with
other reported results [3, 59, 60].
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(a) (b)

(c)

Figure 4. Wall-normal distribution of resolved turbulence intensities (663 nodes).

Plane turbulent Couette �ow has the unique feature of a constant shear stress distribution, i.e.


〈 �u1;2〉 − �〈 �u′′
1 �u2〉 − �〈�12〉 ≈ �w =�u2� (53)

The three items on the left-hand side of this equation represent the averaged resolved viscous
shear stress, resolved Reynolds shear stress and SGS shear stress, respectively. The above
approximate equation was obtained from the �ltered streamwise momentum equation based
on several assumptions: the �ow is steady and homogeneous in the x1–x3 plane, and the mean
resolved and SGS velocities normal to the homogeneous plane are zero [61, 62], i.e. 〈 �u2〉=0
and 〈 �u′′

2 〉=0. It has been shown both theoretically [63] and numerically [52] that the Reynolds
shear stress varies in a cubic manner in the near-wall region. Analysis of the cubic behaviour
of the resolved Reynolds shear stress for the (dynamic) Smagorinsky-type SGS models can
be found in the works by Piomelli [18, 64] and Pope [65]. As expected, in Figure 5, the
resolved Reynolds stress diminishes in the vicinity of the wall following the cubic law, i.e.
−〈 �u′′

1 �u2〉 ∝ x+32 for 06 x+2 ¡8.
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Figure 5. Wall-normal pro�le of resolved Reynolds shear stress (663 nodes).
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Figure 6. Variation of the skin-friction coe�cient Cf with Reynolds number (663 nodes).

Figure 6 compares the predicted values of the resolved skin-friction coe�cient with the
two following empirical friction laws for turbulent Couette �ow:
(1) Robertson and Johnson [38]

Cf =
0:072

4[log(2Re)]2
(54)

(2) Aydin and Leutheusser [41]

C−1=2
f = 3:54 ln(2ReC1=2f ) + 4:1 (55)
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where Cf , the friction coe�cient, is de�ned as

Cf = �w=(�U 2
0 =2)= (u�=Uh)2=2 (56)

and U0 = 2Uh is the velocity di�erence between the two plates. Figure 6 shows that the
resolved friction coe�cient obtained from the LES generally agrees with both Equations (54)
and (55). Since the near-wall velocity �eld is less resolved as the Reynolds number increases
for a given grid system (663 nodes in this case), the resolved velocity gradient component �u1;2
and the consequent wall shear stress �w can become underpredicted. Therefore, as expected,
the resolved friction coe�cient tends to have a lower value than the empirical ones (with a
deviation of approximately 8%) at the higher Reynolds numbers.

4.3. Rate of SGS TKE production, norm of �ltered strain rate tensor, model coe�cient,
and SGS viscosity

In order to understand the characteristics of the model coe�cient CS and SGS viscosity
�sgs, we need �rst to discuss the rate of TKE production for SGS motions Pr , the resolved
viscous dissipation rate ”r , and the norm of the �ltered strain rate tensor | �S|. In the following
discussion, the results obtained using the ‘standard’ DM of Lilly [2] are used for comparison
to those predicted using the PIE. The rate of TKE production for SGS motions Pr is de�ned
as [65]

Pr =−�∗
ij
�Sij (57)

Following Pope [65], Pr is referred to as the rate of TKE production for SGS motions instead
of the rate of SGS TKE dissipation, since it is analogous to the classical de�nition of the
production term due to the deviatoric part of the Reynolds stress tensor in the RANS (Reynolds
Average Navier–Stokes method) approach. Also, Pr determines the rate of TKE transport from
the �ltered motions to the residual motions through an inviscid process rather than an actual
viscous dissipative process. It acts as a sink of TKE for the �ltered-scale motions and as a
source of TKE for the residual SGS motions. The resolved viscous dissipation rate directly
from the �ltered �eld is given by

”r =2� �Sij �Sij= �| �S|2 (58)

which indicates that ”r ∝ | �S|2, i.e. ”r is an indicator§ for the magnitude of the �ltered strain
rate tensor | �S|. Although both Pr and ”r represent sinks for TKE of the �ltered-scale motions,
their mechanisms are entirely di�erent: ”r is a real dissipation attributed to the resolved viscous
e�ects, while Pr is due to an inviscid and inertial mechanism, and can also be negative in
the case of backscatter.
Figure 7 shows the mean distribution of Pr along the wall-normal direction in terms of

both dimensional and nondimensional values. It is observed that the Pr pro�les predicted
using both the DM and PIE, exhibit a general anisotropy due to the restriction by the wall:

§Let 〈x〉 represent an averaged result, i.e. 〈x〉=(1=N )∑N
i=1 xi . From statistics, we know that, in general,

〈xy〉 �= 〈x〉〈y〉. Thus, for Pr= �sgs| �S|2 we have 〈Pr〉= 〈�sgs| �S|2〉 �= 〈�sgs〉〈| �S|〉〈| �S|〉; and for ”r = �| �S|2, we have
〈”r〉= �〈| �S|2〉 �= �〈| �S|〉〈| �S|〉. Strictly speaking, although the averaged value of 〈Pr〉, 〈”r〉 and 〈�sgs〉 are known, 〈| �S|〉
cannot be directly inferred from these values.
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Figure 7. Averaged rate of TKE production for SGS motions in the wall-normal direction (663 nodes).

Figure 8. Grid e�ect on the rate of TKE production for SGS motions (Re=2600).

it is lower in the central region and peaks in the near-wall region around x+2 =13. From the
dimensional diagram, it is observed that the pro�le of Pr is sensitive to the Reynolds number,
i.e. the absolute value of Pr increases dramatically as the Reynolds number increases. This
is explained by the fact that for the same discrete grid system, a higher Reynolds number
turbulent �ow has ‘more’ net TKE to be transferred from the resolved to SGS motions.
Figure 8 demonstrates the grid e�ect on the Pr term. Clearly, as the grid becomes coarser,
the nondimensional value of Pr increases in the boundary layer region, especially around the
peak location.
Equation (57) is a general de�nition for Pr , which is applicable to any SGS constitutive

relations. In general, e.g. for the dynamic two-parameter mixed models [20, 21, 29, 62, 66, 67]
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Figure 9. Resolved viscous dissipation in the wall-normal direction (663 nodes).

and the nonlinear quadratic DMs [3, 4, 23, 24], the value of Pr is decided by both the magni-
tudes of −�ij and �Sij, as well as their relative tensorial geometrical relation. The importance
of the tensorial geometry of the negative SGS stress and �ltered strain rate tensors has lately
been indicated by several studies based on a priori approaches [68–70] and a posteriori ap-
proaches [3, 4, 71, 72]. Since the three principal axes (orthonormal eigenvectors) of −�ij are
not necessarily aligned with those of �Sij in the general case, various possibilities exist, one
of which is the speci�c theoretical situation that an instantaneous orthogonality is allowed
to exist between the −�ij and �Sij such that their production is trivial, i.e. Pr =−�∗

ij
�Sij=0

(although the value of ‖�ij‖ and | �S| may still be very large). For the Smagorinsky-type mod-
els, the case that Pr =0 due to such an orthogonality never exists, since the principal axes
of −�ij are always aligned with those of �Sij. Furthermore, for the Smagorinsky-type models,
if Pr =0 and �� �=0 then at least one of the two following conditions must be true: CS =0
and=or | �S|=0. Thus, in general, a higher Pr is not a su�cient condition for a larger value of
CS or �sgs, because the value of Pr is determined not only by the relative tensorial magnitudes
of −�ij and �Sij but also by the relative geometry between them as well. Notwithstanding the
general case, in the particular case of the Smagorinsky-type models, Pr takes the following
form on substituting Equation (3):

Pr = �sgs| �S|2 =CS ��2| �S|3 (59)

Thus, for a particular turbulent �ow with the Reynolds number speci�ed, Pr =Pr(�sgs; | �S|)=
Pr(CS; ��; | �S|) when a Smagorinsky constitutive relation is adopted for the SGS model. From
previous analysis, we understand that a higher Reynolds number corresponds to a higher
level of Pr . While from Equation (59), it is understood that a higher level of Pr does not
necessarily correspond to larger values of CS or �sgs, because the norm of the �ltered strain
| �S| is also involved which responds to the Reynolds number independently.
Figures 9 and 10 plot the dimensional and nondimensional pro�les of the resolved viscous

dissipation rate ”r in the wall-normal direction for the entire channel and the core region.
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Figure 10. Resolved viscous dissipation rate in the core region (663 nodes).

Figure 11. Mean distribution of model coe�cient in the wall-normal direction (663 nodes).

From the dimensional pro�les, it is observed that both ”r and | �S| increase with the Reynolds
number. As shown in both the dimensional and non-dimensional diagrams, ”r increases dras-
tically as the wall is approached especially within x+2 ¡30. This indicates a strong anisotropic
distribution of the norm of the �ltered strain rate tensor | �S| along the wall-normal direction.
The near-wall anisotropy of | �S| is due to the behaviour of the dominant velocity gradient
component �u1;2, whose value changes drastically in the near-wall region and in an average
sense reaches a maximum at the wall.
Figure 11 illustrates the mean distribution of the proposed model coe�cient CS along

the wall-normal direction in comparison with those calculated using the conventional DM
[2] and SM [57]. In Figure 11, C1=2S instead of CS is used because the conventional SM
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Figure 12. Grid e�ect on model coe�cient (Re=2600).

[57] uses C2S (instead of CS) to model the SGS stress tensor in Equation (3). As shown in
Figure 11, the value of the Smagorinsky constant for the SM typically [19, 34, 64] ranges from
0.065 to 0.12, however, the value of C1=2S for the PIE ranges only from 0.014 (Re=7050)
to 0.026 (Re=2600) in the core region. The model coe�cient pro�le for both the DM and
PIE vanishes at the wall, which is due to the requirement that the SGS viscosity must vanish
at the wall (�sgs|x+2 = 0 ≡ 0). This is intrinsically di�erent than the approach of the conven-
tional SM [57], in which case this near-wall physical requirement is forced to be realized
by an ad hoc geometric damping function instead of the model itself, for instance [18],
d(x+2 )= [1 − exp(−x+2

3=253)]. Also, as demonstrated in Figure 11, for the three Reynolds
numbers tested, the value of C1=2S for the PIE is about 30% that of the DM, although both
the DM and PIE are dynamic SGS models based on the same Smagorinsky constitutive re-
lation. Furthermore, it is observed from Figure 11 that as the Reynolds number increases,
the value of CS decreases for both the PIE and DM, which con�rms our previous analy-
sis that for the dynamic SM, a higher Reynolds number does not necessarily relate to a
larger CS because of the involvement of | �S| which is a function of Re (see Equation (58)
and Figures 9 and 10). Figure 12 demonstrates the grid scale e�ect on the wall-normal
distribution of the model coe�cient calculated using the PIE. From the �gure, two charac-
teristics of the modelling coe�cient can be concluded, i.e. CS is not a grid invariant in a
dynamic procedure, which is in sharp contrast to the conventional SM approach [57]; also,
a coarser grid does not necessarily warrant a larger value of CS since it is the SGS visco-
sity �sgs rather than CS that plays a more important role in the Smagorinsky types of models.
In the next paragraph, we will further clarify the relation between �sgs and CS.
Figure 13 demonstrates that as the Reynolds number increases, the pro�le of the SGS

viscosity �sgs increases only slightly in the bu�er region, which is in contrast to the large
change in the CS pro�le shown in Figure 11. The explanation lies in the de�nition of �sgs,
which indicates that for any particular instantaneous �ow �eld (Re must be speci�ed), �sgs is
a function of the grid level �lter size, CS and | �S|, i.e. �sgs = �sgs( ��; CS; | �S|). Thus, it is clear
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Figure 13. Mean SGS viscosity pro�le in the wall-normal direction (663 nodes).

Figure 14. Grid e�ect on SGS viscosity (Re=2600).

that a larger value of �sgs does not necessarily correspond to a large value of CS due to the
involvement of | �S| (if �� is �xed). In fact, from Figures 9 and 10, we understand that | �S|
increases drastically with Re, which explains the di�erence between the Reynolds number
e�ects on CS and �sgs. Figure 13 indicates that the bu�er region (especially around x+2 ≈ 30)
responds to the Reynolds number more actively than other parts of the �ow in terms of �sgs.
Such an anisotropic behaviour of �sgs is consistent with its de�nition (Equation (51)) and
the near-wall anisotropic e�ect of | �S| and CS as illustrated in Figures 9 and 11, respectively.
Figure 14 indicates that the bu�er region also responds to the grid scale more sensitively than
other regions in terms of the value of �sgs.
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Finally, we brie�y comment on the non-dimensionalization method for the SGS viscosity
used in this research. From the Equations (58) and (59), it is understood that �sgs=� has
a special meaning unique for the Smagorinsky constitutive relation: the ratio �sgs=� actually
describes the relative magnitudes of the two sinks for the TKE for the �ltered motions, i.e.
Pr=”r ≡ �sgs=�.

5. CONCLUSIONS

This paper provides a consistent mathematical treatment for the local optimal dynamic
Smagorinsky SGS stress model, as well as revisits the Smagorinsky relation from the point
of functional variation and function approximation. In contrast to the previous approaches
[10, 16], the local error density functional Q has been successfully minimized in a direct man-
ner without resorting to a global integration. The properties of the variations of the local error
functional at di�erent orders have been examined, and the possibilities of the non-extremum
in�ection and saddle points have been strictly excluded from the solution set of the local error
functional minimization. A su�cient and necessary condition for local optimization of the dy-
namic Smagorinsky model using functional variational theory has been obtained, which is in
the form of an orthogonal condition (OC) and controls the local optimal model coe�cient for
a dynamic Smagorinsky SGS model. The OC is a useful tool in dynamic SGS modelling op-
timization, which uni�es a few conventional modelling formulations as its special theoretical
solutions under di�erence restrictions. These conventional formulations include the dynamic
model (DM) of Germano et al. [1] and Lilly [2], and the Fredholm integral equation of the
second kind (FIE2) of Ghosal et al. [10].
From the integral form of the OC, a Fredholm integral equation of the third kind or Picard’s

integral equation (PIE) has been derived, which is necessary to make the local error density Q
minimum. Similar to the FIE2 [10], this PIE holds locally at any point and needs to be solved
only once for the entire domain. The proposed PIE has one less convolution operation than
the FIE2 of Ghosal et al. [10], and therefore it is less expensive to compute. It should be
noted that as the su�cient and necessary condition for localization, the OC implies other
theoretical applications, and the PIE is only one of its derivatives.
For the purpose of demonstrating the theoretical potential of the OC as well as the pos-

sibility of applying it in practice, numerical tests based on the PIE have been performed
using turbulent Couette �ow. Some salient features of this prototypical near-wall turbulent
�ow have been obtained based on comparisons with the experimental and DNS results of
other researchers. These features include the existence of a logarithmic mean velocity pro-
�le, the characteristic anisotropic wall-normal distribution of the turbulent intensities, and a
near-wall cubic behaviour for the resolved Reynolds shear stress. In order to solve the PIE
e�ectively, an implicit solution scheme with an additional computational cost of less than 4%
compared to the DM, has been developed by using the discrete Gaussian �lter of Sagaut and
Grohens [56]. It should be noted that this e�cient implicit solution scheme for the PIE holds
when it is acceptable to assume 2-D homogeneity in a �ow �eld. However, the computational
cost for direct solution of these integral systems for a �ow �eld with complex geometries
or without 2-D homogeneity is expected to be much higher, and general e�ective numerical
algorithms for solving the integral equation of the PIE locally need to be pursued in future
studies.
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Physical meanings for such grid and test-grid level tensors as �ij, �ij, Mij, M ′
ij, L

appr∗
ij

and L
proj∗
ij have been proposed by identifying their role in various constitutive and constructive

relations. The construction of the approximation tensor space for the projection of the Leonard
stress has also been investigated, including the approximation tensor space of Lilly’s original
approach M

orig
L [2], that of the revised approach of Lilly Mrev

L , and that of the general local
optimization approach Mo. These approximation tensor spaces for the Leonard stress are
essential to the optimization methods adopted for deriving the dynamic localization models
using the local minimal residual of the Germano identity as the criterion.
For the Smagorinsky constitutive relation, the norm of the �ltered strain rate tensor | �S| is

found to play a key role in determining the relative magnitudes of the SGS stress �ij, rate
of TKE production for SGS motions Pr , SGS viscosity �sgs, and model coe�cient CS. The
value of | �S| (indicated by the resolved viscous dissipation rate ”r) changes dramatically with
the Reynolds number, especially within the near-wall region for x+2 ¡30. Given that all the
other test conditions are the same, the mean rate of TKE production for SGS motions Pr

increases as the Reynolds number increases, indicating a more massive net transfer of TKE
between the �ltered and subgrid scales of motions. From the de�nition of the SGS viscosity,
it is understood that a large value of �sgs does not of itself require a large value of CS because
of the involvement of | �S|. For a speci�c �ow (with the grid level �lter and Re speci�ed), Pr

changes with CS and | �S|3, or with �sgs and | �S|2, and therefore due to the involvement of | �S|,
a higher level of Pr is not a su�cient condition for a higher level of CS or �sgs.
In general, this research attempts to investigate the properties of the local optimal SGS stress

model strictly within the framework of the classical Smagorinsky constitutive relation. It is
not intended for claiming the ‘best’ model or evaluating di�erent optimal SGS stress models
without a restriction of the constitutive relations. An engagement of this systematic study of
the Smagorinsky-type optimal models does not imply that the authors view the Smagorinsky-
type models as the best approach for LES. Instead, it should be indicated that many draw-
backs of the (dynamic) Smagorinsky models originate from the simplicity of its assumed
linear Boussinesq constitutive relation. An increasing body of research [3, 4, 7, 23, 24, 68] sug-
gests that instead of performing optimization for the dynamic procedure within the simple
Smagorinsky constitutive framework, which usually results in a formulation that is relatively
di�cult to solve (e.g. an integral equation), improved methods may consider non-Smagorinsky
constitutive relations in the dynamic modelling procedure [3, 4, 7, 20, 21, 23, 24, 29, 62, 66, 67].
Nevertheless, an extensive discussion of this topic is still very useful, because so far the
(dynamic) Smagorinsky-type models are still the most popular in the LES community.

APPENDIX A: PROOF OF SUFFICIENCY

In Section 2, the OC has been proven necessary for minimizing the local error functional Q.
In this appendix, we further give the proof that the OC is also a su�cient condition.
Solutions obtained from the variational condition (Equation (24)) or the OC

(Equation (28)), can be extremum functions, or non-extremum in�ection or saddle ‘points’
(functions actually) for the local error functional Q(CS(x0;x0)). To investigate the su�cient
condition for the minimal Q, its second and higher order variations must be considered.
Assuming that Q[CS(x0;x0) + ��CS(x0;x0)] is at least three times di�erentiable with respect
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to �, where � is all su�ciently small numbers near 0, then the following results for the second
and nth order variations can be readily obtained from their de�nitions [35]:

�2Q(CS(x0;x0); ��CS(x0;x0)) =
d2

d�2
Q(CS(x0;x0) + ��CS(x0;x0))

∣∣∣∣
�=0

= 2�Eij�Eij¿0 (A1)

�nQ(CS(x0;x0); ��CS(x0;x0)) =
dn

d�nQ[CS(x0;x0) + ��CS(x0;x0)]
∣∣∣∣
�=0

≡ 0 (A2)

at any given location x0 and for n¿3.
Suppose that the function Cℵ

S (x;x0) is a solution of the OC, which makes the �rst order
variation of Q vanish. The possibility for Cℵ

S (x;x0) to be an in�ection ‘point’ can be excluded
by condition (A1), which does not allow the sign of �2Q to change at Cℵ

S (x;x0). It can be
shown that the functional Q can be expanded using its variations in the following manner [35]:

Q(Cℵ
S (x0;x0) + ��CS(x0;x0)) =

3∑
n=0

�n

n!
�nQ(Cℵ

S (x0;x0); �CS(x0;x0))

+R3(Cℵ
S (x0;x0); �CS(x0;x0); �) (A3)

where R3 =R3(Cℵ
S (x0;x0); �CS(x0;x0); �) is the truncation error, which is restricted by

|R3|6 |�|3
3!

max
|�|6|�|

∣∣∣∣ d3d�3Q(Cℵ
S (x0;x0) + ��CS(x0))− �3Q(Cℵ

S (x0;x0); �CS(x0;x0))
∣∣∣∣ (A4)

∀ � and � near 0. Since the third order derivative and variation vanish as shown in Equa-
tion (A2), we know that |R3| ≡ 0. This result can also be understood in the following intuitive
way: from Equations (20) and (21), we understand that Q=EijEij is a second order func-
tional of CS(x;x0) and thus its third and higher order variations must vanish and |R3| ≡ 0.
Considering that the �rst order variation vanishes, then Equation (A3) can be simpli�ed to

Q(Cℵ
S (x0;x0) + ��CS(x0;x0))=Q(Cℵ

S (x0;x0)) +
�2

2!
�2Q(Cℵ

S (x0;x0); �CS(x0;x0)) (A5)

Using (A1), we obtain

Q(Cℵ
S (x0;x0) + ��CS(x0;x0))¿Q(Cℵ

S (x0;x0)) (A6)

The above result clearly indicates that at any given location x0, Cℵ
S (x;x0) which satis-

�es the necessary condition will only allow Q to be locally minimal. Thus the variational
condition and its equivalent expression, i.e. the OC or DEC, are not only necessary but
also su�cient for minimizing the local error functional Q. The possibility for Cℵ

S (x;x0)
to be a saddle point has automatically been excluded, because Equation (A6) prohibits[
Q(Cℵ

S (x0;x0) + ��CS(x0;x0))− Q(Cℵ
S (x0;x0))

]
from changing sign at Cℵ

S (x;x0).
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